skip to main content


Search for: All records

Creators/Authors contains: "Blackburn, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Seed dispersal is important for forest growth, maintenance, and regeneration. Orangutans are large-bodied frugivores with ecological roles as seed predators and seed dispersers. However, little is known about orangutans’ ecological roles and how they relate to orangutans’ patterns of frugivory. We investigated Bornean orangutans’ (Pongo pygmaeus wurmbii) ecological roles at the Cabang Panti Research Station in Gunung Palung National Park, Indonesian Borneo. We collected orangutan feces (n=401) and analyzed them for intact seeds (August 2018 to March 2020). We observed orangutan fruit handling behavior for 306 feeding bouts for 53 fruit genera to measure how often orangutans swallow, spit, or predate seeds. We used Ivlev’s Electivity Index to analyze fruit preference using long-term feeding data and phenology data (2014-2019). Lastly, we combined fruit preference with fruit handling behavior using the seed dispersal effectiveness framework to identify which fruit taxa were most effectively dispersed. Orangutans dispersed seeds in 71.8% of fecal samples with a mean of 27.9 ±4.5 (SD=0.95) seeds (>2mm) per fecal sample. Orangutans predated seeds more often than spitting or swallowing seeds (predating= 42.1% of fruit feeding time; spitting= 21.8%; swallowing= 12.5%; mixed behaviors= 10.6%, not observed=12.0%). Additionally, the top five preferred fruit genera, (Dialium, Sindora, Scaphium, Magnifera, and Spatholobus) were highly predated (0 to 5% of seeds dispersed). We identified Alangium and Tetramerista as the most effectively dispersed genera, orangutans frequently dispersed and preferred these fruits. We found orangutans are frequent seed predators, but this overlaps with their seed dispersal role, and we describe orangutans’ seed dispersal contribution. Funders: NSF (9414388, BCS-1638823, BCS-0936199); National Geographic; USFish/Wildlife (F18AP00898, F15AP00812, F13AP00920, 96200-0-G249, 96200-9-G110); Leakey; Disney Conservation Fund; Wenner-Gren; Nacey-Maggioncalda; Conservation-Food-Health; Orangutan Conservancy; Woodland Park Zoo; Boston University GRAF 
    more » « less
  2. null (Ed.)
    Seed dispersal is important for forest growth, maintenance, and regeneration. Orangutans are large-bodied frugivores with ecological roles as seed predators and seed dispersers. However, little is known about orangutans’ ecological roles and how they relate to orangutans’ patterns of frugivory. We investigated Bornean orangutans’ (Pongo pygmaeus wurmbii) ecological roles at the Cabang Panti Research Station in Gunung Palung National Park, Indonesian Borneo. We collected orangutan feces (n=401) and analyzed them for intact seeds (August 2018 to March 2020). We observed orangutan fruit handling behavior for 306 feeding bouts for 53 fruit genera to measure how often orangutans swallow, spit, or predate seeds. We used Ivlev’s Electivity Index to analyze fruit preference using long-term feeding data and phenology data (2014-2019). Lastly, we combined fruit preference with fruit handling behavior using the seed dispersal effectiveness framework to identify which fruit taxa were most effectively dispersed. Orangutans dispersed seeds in 71.8% of fecal samples with a mean of 27.9 ±4.5 (SD=0.95) seeds (>2mm) per fecal sample. Orangutans predated seeds more often than spitting or swallowing seeds (predating= 42.1% of fruit feeding time; spitting= 21.8%; swallowing= 12.5%; mixed behaviors= 10.6%, not observed=12.0%). Additionally, the top five preferred fruit genera, (Dialium, Sindora, Scaphium, Magnifera, and Spatholobus) were highly predated (0 to 5% of seeds dispersed). We identified Alangium and Tetramerista as the most effectively dispersed genera, orangutans frequently dispersed and preferred these fruits. We found orangutans are frequent seed predators, but this overlaps with their seed dispersal role, and we describe orangutans’ seed dispersal contribution. Funders: NSF (9414388, BCS-1638823, BCS-0936199); National Geographic; USFish/Wildlife (F18AP00898, F15AP00812, F13AP00920, 96200-0-G249, 96200-9-G110); Leakey; Disney Conservation Fund; Wenner-Gren; Nacey-Maggioncalda; Conservation-Food-Health; Orangutan Conservancy; Woodland Park Zoo; Boston University GRAF 
    more » « less
  3. null (Ed.)
    Bornean orangutans (Pongo pygmaeus wurmbii) are large bodied great apes that live in rainforests dominated by mast-fruiting dipterocarp trees with extreme fluctuations in fruit availability. Orangutans respond to this temporal and spatial variability in fruit production by ranging over large areas and adopting a semi-solitary social structure. Females have overlapping home ranges, engage in both scramble and contest competition for food, and actively avoid each other. Overlap requires individuals to share access to resources and adjust ranging to optimize energy intake, thus habitat quality likely influences ranging patterns. Here we investigate whether habitat and food availability are significant predictors of female orangutan home range overlap using data collected at Gunung Palung National Park, Indonesia, a site with 7 distinct habitats. Researchers collected GPS waypoints of orangutan movements during all day focal follows. Fruit availability was measured through monthly monitoring of over 6000 trees, across 60 plots. We used R to calculate range overlap per habitat between pairs of adult female orangutans over three-month periods (2013-2019). Our results show a trend towards a negative relationship between overlap and fruit availability (N=15, Pearson’s R= -0.322, p=0.242). We also found habitat to be a predictor of female range overlap, with overlap most likely to occur in the alluvial bench habitat and significantly less likely in the peat swamp (p<0.05). These findings reveal the independent influences of fruit availability and habitat type on female orangutan home range overlap, highlighting the potential importance of habitat-specific food availability on ranging behavior and contest competition. Funders: NSF (9414388, BCS-1638823, BCS-0936199); National Geographic; USFish/Wildlife (F18AP00898, F15AP00812, F13AP00920, 96200-0-G249, 96200-9-G110); Leakey; Disney Conservation Fund; Wenner-Gren; Nacey-Maggioncalda; Conservation-Food-Health; Orangutan Conservancy; Woodland Park Zoo; Boston University GRAF 
    more » « less
  4. Nesting behavior is unique to the great apes among primates and has wide ranging implications for understanding socioecology and conservation. While much is known about nesting in gorillas, chimpanzees, and some orangutan populations living in disturbed forest and peat swamp, the nesting behavior of orangutans living in primary forest is poorly understood. We studied the nesting behavior of Bornean orangutans (Pongo pygmaeus wurmbii) in Gunung Palung National Park, West Kalimantan, Indonesia, using observations of 4,526 nesting events collected between October 1994 and September 2018, testing hypotheses about nest height. We found a significant effect of age/sex on nest height (F(3)=106.1, p<0.001). Post-hoc comparisons (adjusted α-level= 0.008) showed that flanged males nested significantly lower than all other age/sex classes (p<0.001) while females nested significantly lower than juveniles and unflanged males (p<0.001). Flanged males and females tended to nest lower in the canopy when alone than in the presence of other orangutans (males: F(3)=24.25, p<0.001; females: F(3)=5.83, p=0.001). Our results help demonstrate that across forest types, flanged male orangutans prefer to nest lower in the canopy while all other age- and sex-classes prefer higher canopy positions for nesting. Furthermore, our finding that solitary individuals nest lower than individuals near other orangutans suggests that nesting higher in the canopy may allow individuals to space their nests optimally when in proximity of other orangutans. These results have significant conservation implications, as logging and deforestation fundamentally change the forest structure, disrupting the canopy and making preferred nesting locations unavailable. 
    more » « less